
RESOURCE CONSTRAINED DATAFLOW RETIMING HEURISTICS FOR VLIW ASIPS �

M. Jacome and G. de Veciana and C. Akturan
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712
fjacome,gustavog@ece.utexas.edu

Abstract

This paper addresses issues in code generation of time critical loops
for VLIW ASIPs with heterogenous distributed register structures.
We discuss a code generation phasing whereby one first considers
binding options that minimize the significant delays that may be in-
curred on such processors. Given such a binding we consider retim-
ing, subject to code size constraints, so as to enhance performance.
Finally a compatible schedule, minimizing latency, is sought. Our
main focus in this paper is on the role retiming plays in this com-
plex code generation problem. We propose heuristic algorithms for
exploring code size/performance tradeoffs through retiming. Ex-
perimental results are presented indicating that the heuristics per-
form well on a sample of dataflows.

� Introduction

The trend in today’s embedded processor market is increasingly
towards architecture specialization, i.e., towards developing Ap-
plication Specific Instruction-Set Processors (ASIPs) with a data-
path and instruction set tailored to a class of applications [12, 13].
Customization of an ASIP datapath for a class of applications, say
in the areas of signal processing and/or multimedia, may be per-
formed in a variety of ways. In particular, many ASIPS include
small, distributed register files, placed at the inputs and outputs of
ALUs and other functional units (see Fig.1), as opposed to having
a large, shared register file [12, 13]. This is a key motivation for the
work discussed in this paper.

It is well known that ASIP’s specialized architectures pose diffi-
cult challenges to today’s compiler technology [12, 13]. At the root
of the problem lies the fact that traditional code generation heuris-
tics perform poorly in the context of such specialized architectures.
For example, performing register allocation and assignment in the
context of the small, distributed register files alluded to above adds
a new dimension of complexity to the already difficult code gener-
ation problem.

In [9, 8] we proposed a non-traditional approach to the problem
of devising efficient code generation heuristics for VLIW ASIPs.
These heuristics are intended to be used for time critical loops with

�This work is supported by a National Science Foundation NSF Career Award MIP-
9624321 and by Grant ATP-003658-088 of the Texas Higher Education Coordinating
Board.

single basic block bodies. We started by observing that a very large
instruction word is a composition of elementary RTL instructions
(microinstructions) that can be concurrently executed by the pro-
cessor. Exploiting this fact, our approach reduces the first phases
of the code generation problem to that of finding a minimum la-
tency schedule and binding of the dataflow’s operations (activities)
and data transfers (transactions) directly to the ASIP datapath’s re-
sources.

In this paper we will consider the role of dataflow retiming in
the code generation process. The problem of finding a minimum
latency schedule (including retiming) and corresponding binding
of the code segments of interest directly onto the ASIP datapath is
exceedingly complex[3, 1]. We propose to decompose the process
into three steps: 1) determine a good binding of activities (oper-
ations) and data objects (operands/results) to functional units and
register files, respectively; 2) given a binding, determine a retim-
ing likely to minimize latency, subject to code size constraints; 3)
finally, determine a compatible schedule for activities and transac-
tions (i.e., data transfers) that minimizes latency.

The paper is organized as follows. In x2 we describe the pro-
posed phasing of the code generation process, and discuss the role
of retiming in this context. In x3 we propose heuristics to determine
appropriate retiming options, and discuss examples. We conclude
with a discussion of related work x4, examples x5, and future work
x6.

� Binding� Retiming and Scheduling Problems

��� Binding

We begin by briefly describing our approach to binding a dataflow
to a datapath. A dataflow will be modeled by a DAG, G�A�T �,
where the nodes A represent activities, i.e., operations to be car-
ried out on functional resources, and edges T represent transac-
tions, i.e., data transfers associated with bringing data objects to
the storage resources supporting the execution of a given activ-
ity, see Fig.1. As alluded to above, we will tackle the case of a
dataflow corresponding to a single basic block within a loop body.
Thus the dataflow shown in Fig.1 includes data objects with itera-
tion indices, e.g., y�i��y�i�1�, indicating when a data object is used
(shared) across several iterations.

In characterizing the datapath we will focus on its functional
and storage resources denoted F�S respectively. Storage resources
are partitioned into register files (RF) and memory banks (MB), i.e.,
S �RF�MB. We let I1

f (I2
f) denote the storage resources where the

first (second) operand could reside in order to execute an operation
on f �F . Similarly Of denotes storage resource(s) where the result
of an operation carried out on f could be stored. Thus I1f � I

2
f , and

O f are subsets of RF corresponding to the register files associated

Figure 1: Sample iteration basic block dataflow and datapath.

with functional unit f � For example, the register files associated
with A1 in the Fig.1 are I1

1 � fR1g, I2
1 � fR2g, and O1 � fR2g�

Our goal is to determine a binding of activities and their in-
put/result data objects to functional/storage resources. A binding
of activities is a function mapping each activity to an appropriate
functional resource. To unambiguously bind an activity we must
also specify a binding of data objects, i.e., the activity’s operands
and results to register files. Thus, in our example, activity a1, an
addition, could be bound to A2, and its input data objects c1�x�i�
must each be bound to either I22 or I1

2 , i.e., R1 or R2, but not the
same.

In [9] we proposed a novel approach to generating binding al-
ternatives having reduced transaction costs. Recall that a transac-
tion is associated with bringing a data object from one storage space
to another during the execution of the dataflow. We say a transac-
tion has “zero cost” when a binding for two activities sharing a
data object is such that it remains in the same storage space during
the execution of both activities. For example a1 and a2 share the
operand x�i� and thus if a1�a2 are bound to A2,M1 respectively, one
should place x�i� on R3, see Fig.1. With such a binding x�i� would
need to be loaded from memory only once.

Each shared data object thus corresponds to an opportunity for
eliminating a transaction, if an appropriate binding is selected. Given
a specific datapath, we say that each data object shared by a pair of
activities places a binding restriction on the set of bindings to be
considered.1 In practice a set of such restrictions may include con-
flicting requirements. Thus the goal is to determine maximal sets of
consistent restrictions, i.e., satisfying as many restrictions as pos-
sible. Such sets will in turn correspond to binding alternatives that
maximize the number of potential zero cost transactions. The prob-
lem can be translated to an integer programming problem where the
cost function reflects the number of restrictions that are satisfied
and thus potential zero cost transactions that can be achieved, see
[9] for details. From here on, we shall assume that such a binding
has been obtained for the given dataflow/datapath.

��� Retiming problem

For retiming purposes, a modified dataflow graph is used to repre-
sent loop body basic blocks. We will refer to the example shown
on the top left in Fig. 2. The term iteration of a loop body is used
to refer to the set of operations that are executed once for a given
iteration index.

The loop body basic block is modeled using a weighted directed
graph G�A�E��w� where the nodes A represent activities, e.g., oper-
ations to be carried out on functional resources, and directed edges
E � A�A represent data dependencies where the result of an ac-
tivity serves as an operand for other. Non-negative integer weights
�w � �wi j : �i� j� � E� � ZE

� are associated with each edge, where
wi j represents the relative distance, in number of iterations, be-
tween the time the data object is created by activity i to the time
it is consumed by the activity j where the edge abuts [11].

Retiming refers to a transformation of the original dataflow aimed
at pipelining several loop body iterations within the same execu-

1If a data object is shared by more than one pair of activities several corresponding
restrictions will be generated.

Figure 2: Example of retiming dataflow graph.

tion cycle. Such transformations are carried out to reduce the ex-
ecution latency. We define this formally as a transformation of
the dataflow graph’s weights �w, given a retiming vector �r � �ra :
a � A� � Z

A
�, to a new set of weights �v � f ��w��r� � Z

A
� where

vi j � wi j � ri � r j� ��i� j� � E. A retiming vector, �r, is said to
be admissible if the resulting weights are non-negative, i.e.,�v � 0,
[11]. Thus an admissible retiming of a dataflow graph results in
new edge weights, vi j, given by the sum of ri� r j , the relative iter-
ation distance between retimed nodes i and j, and wi j, the iteration
distance between the production and consumption of a data object
shared by the two nodes when executed in the same iteration.

The retiming example shown in Fig. 2 moves activity a1 ahead
of a2 by one iteration. As a result, on each execution cycle, activ-
ities from two iterations, a1 from i� 1, and a2 from i, are being
pipelined. Thus in the original version of the dataflow graph the
execution of a1 had to precede a2, while in the retimed version the
two activities can be executed in parallel.

In the sequel we will use the notion of clusters of activities, cor-
responding to a set of activities that have been retimed by the same
amount. In particular let Cn � fa � Ajra � ng for n � 0�1�2� � � �m�
1, where Cn denotes the set of activities that have been pushed for-
ward n iterations. Thus, in our example, there are two clusters
C0 � fa2g and C1 � fa1g, shown in Fig.2.

Unfortunately the improvements in performance achieved via
retiming come at a significant cost. In order to allow execution of
the retimed loop body a prolog and epilog code sections are re-
quired to fill and empty the pipeline. One can show that a retiming
of a dataflow which includes m clusters will result in a code size
which is m times that of the original dataflow. The example shown
in Fig.2 has two clusters, leading to a prolog and epilog that double
the code size of the original dataflow. Code size is an important
factor in ASIP based embedded systems since on-chip memory is
limited and expensive.

��� Scheduling

We now briefly discuss the scheduling problem. Given a (possi-
bly retimed) dataflow graph we can obtain a directed acyclic graph
(DAG) G�A�E�� where E� � f�i� j� � E : vi j � 0g, i.e., E � is the set
of arcs in E with zero weight. A zero weight arc between two ac-
tivities in the loop body, means that one uses the result of the other
and hence, must precede the other. By retaining only the arcs with
zero weight, we keep only the important precedence constraints
from the point of view of scheduling. Such graphs are shown on
the bottom of Fig. 2 for the the orignal and retimed versions of the
dataflow. Given the DAG G�A�E�� and the functional unit bindings
of activities we have reduced the problem to a resource constraint
scheduling problem. In [8] we proposed a solution approach to this

problem, based on first establishing an ordering among activities,
and then determining a transaction schedule using a number of reg-
ister assignment policies.

� Heuristics for resource constrained retiming of data�ows

Execution rate can be improved by jointly optimizing over all fea-
sible bindings, retimings and schedules. Unfortunately this is an
exceedingly complex problem. As discussed in x2.1 we propose to
first determine a binding that maximizes the number of zero cost
transactions. In principle this results in zero cost transactions and
reduced latency. A key observation is that our approach to binding
relies only on the data object sharing relation between operations
(which is invariant to retiming) and the structural properties of the
datapath. Thus, in effect, binding has been essentially decoupled
from retiming.

Now given a binding of activities to the datapath’s resources,
one can investigate tradeoffs achieved through retiming and schedul-
ing. Since bindings are selected to maximize the number of poten-
tially zero cost transactions, we shall assume that these savings are
in fact realized 2. During retiming, non-zero cost transactions will
be explicitly accounted for and modeled as activities to take place
on steering resources. We propose to optimize over feasible retim-
ings (for a given binding) so as to minimize the execution latency of
a schedule for these activities. Specifically we envisage two prob-
lems of interest in the context of embedded systems:

Problem 1 Find a retiming that minimizes latency subject to a code
size constraint of m clusters.

Problem 2 Find a retiming that minimizes code size (i.e., number
of clusters) subject to a latency constraint Lmax.

In the following we propose a heuristic approach to solve these two
problems.

��� Inputs

The inputs to the algorithm include: 1) a retiming graph G�A�E��w�
representing the (single basic block) loop body and a corresponding
binding; and, 2) for Problem 1, a max number of allowed clusters
m � 1, and for Problem 2 a max latency Lmax.

The retiming graph, G�A�E��w� is specified as discussed in x2.2.
The nodes represent activities (operations) as well as non-zero cost
transactions (data transfers). The latter may correspond to load/store
operations executed for primary inputs/outputs, and move/load/store
operations executed on shared data objects whose binding restric-
tions (to register files) had to be relaxed in the initial binding pro-
cess. Activities and transactions are bound to functional units and
steering resources (of a given width) respectively. For simplicity,
we shall assume single cycle operations and transactions. However
this is not an inherent limitation of the algorithm.

The retiming graph for a 2nd order IIR filter, shown at the top
in Fig.3, will be used throughout to illustrate the algorithm. Nodes
t1 and t2 represent transactions – specifically, the load of a primary
input and the store of a primary output. They are bound to bus B1,
which has a width of 1. No other transaction nodes are included in
the dataflow, indicating that a binding solution with zero-cost trans-
actions was found for the target datapath. The remaining nodes cor-
respond to operations executed on the datapath’s functional units,
including two multipliers and two ALUs, labeled M1, M2 and A1,
A2 respectively.

2Recall that resource constraints, such as limited register file capacities, may pre-
clude this.

Figure 3: Retiming graph and ASAP schedule for IIR filter.

��� Pre�processing steps

Determine latency lower bound for given binding� For each
datapath resource, determine the number of nodes that use it, and
the amount of time it would take to execute them if, in the best
case, they were executed serially one after the other. For example,
a4 and a5 are bound to multiplier M1, and thus their execution will
take at least two cycles. The maximum, over all resources, of these
bounds gives a lower bound on the execution delay of the retimed
dataflow. For our example we obtain a bound of two clock cycles.

For each cycle in the dataflow graph, a lower bound can be
computed as the sum of all execution delays in the cycle divided
by the number of iteration-distance delays in the cycle, rounded
to highest integer. The retiming dataflow graph in Fig. 3 has two
cycles each giving a lower bound of 2. The maximum over all
bounds previously computed is the lower bound of the graph. This
bound is used as an initial target latency in solving Problem 1.

Determine path�urgency ranks of data�ow nodes Next we
perform an ASAP scheduling (ignoring resource constraints) of the
precedence DAG G�A�E�� (see x2.2.) associated with the input re-
timing dataflow graph. We let the step at which each node a � A
appears in the resulting schedule be its path-rank�a�� Fig.3 shows
the resulting ranks for the nodes of our example. (For clarity the
edges in E� are shown in bold.) This ranking will be used to give
preference to nodes lying on long paths in the original dataflow
graph.

The urgency ranks discussed below are crude estimates for the
extent to which resource conflicts will change the path ranks ob-
tained above. The estimate is obtained as follows. For each node
a � A determine the number of additional nodes, denoted local�a�,
on the same step of the ASAP schedule that are bound to the same
resource. Note that local�a� is a local estimate of the delay, relative
to that its scheduled step, that will be required to accommodate re-
source conflicts associated with a. For the example in Fig. 3 there

exist two conflicts, between a4 and a5, and between a3 and a6, so
these nodes will have local values of 1, and the remaining nodes
a value of 0. Note however that such perturbations will propagate
down the graph. To capture this effect we propose to compute ur-
gency ranks based on the following process. Let Pa�a� A be the set
of nodes directly preceding node a in G�A�E��. Then for all of the
DAG’s source nodes set urgency-rank�a� �path-rank�a�+local�a�
and proceed iteratively forward, letting

urgency-rank�b� � max
a�Pb

�urgency-rank�a��1�� local�b�

For our example, the urgency-rank of t1 is 1 those of a3�a4�a5 and
a6 are 2, then a2�a1�a7�a8, and t2 have ranks 3,4,5,6, and 7 respec-
tively.

Determine cycle�related supernodes Cycles in the retiming
dataflow graph play a special role. In particular one can easily show
that the sum of the iteration delays (edge weights) around a cycle
is preserved upon arbitrary admissible retimings. In practice this
places constraints on how one can pipeline activities which are part
of a cycle. Thus for each cycle or set of cycles sharing common
nodes in the retiming dataflow graph G�A�E� we shall create a su-
pernode - a contraction of the subgraph including these cycle(s).
For our example, two cycles sharing a1 are identified and thus the
supernode encompassing the associated nodes is defined, see Fig.
3. Furthermore, we shall compute the total iteration distance of cy-
cles within supernodes, and assign each node a in the supernode a
cycle-delay�a� given by the minimum iteration distance around the
cycles a belongs to. Our example includes two cycles with delays
1 and 2. Thus node a1, which belongs to both cycles, will have a
cycle-delay�a1� � min�1�2� � 1.

��� Algorithm

We first present the outer loops used to solve Problems 1 and 2 and
then describe their common greedy engine.

Problem 1 is solved as follows. The target latency is initially
set to the lower bound determined in x3.2. The greedy algorithm
is then executed. If the number of clusters in the resulting solution
exceeds the maximum m, the target latency is incremented by one,
and the algorithm is executed again. The process repeats until a so-
lution is found or an (optional) maximum latency is reached. Note
that a solution will always be found if arbitrarily large latencies are
allowed.

For Problem 2 the target latency is set to be the specified maxi-
mum Lmax. The algorithm is executed, and a retiming solution with
a “minimum” (heuristically speaking) number of clusters is found,
or infeasibility is detected.

The greedy engine used to solve both problems defines the re-
timing value for each node in the graph. It includes a main loop –
where each loop iteration n � 0�1�� defines the nodes belonging to
a retimed cluster of nodes Cn. Recall that Cn corresponds to a set
of nodes in the graph that are retimed n times, see x2.2. The key
idea is to greedily add pending nodes with highest urgency rank to
the current cluster if they can be scheduled within the current target
latency, but ensuring no resource conflicts with nodes previously
scheduled.

Two data structures are maintained. The first includes nodes
which are pending, i.e., not yet placed in a cluster. The second
keeps track of nodes in current and previously scheduled clusters.
Nodes in the pending set are eligible for the the current cluster if
they have no direct successor nodes and can be scheduled within
the current target latency.

Eligible nodes which are not part of a supernode are added
to the current cluster according to the following criteria. Eligible
nodes are considered first for insertion in the cluster in order of
decreasing urgency-rank. If there are ties, they are broken based

on (highest) path-rank. If there are again ties, selection is done
arbitrarily. After node insertion the set of eligible nodes is up-
dated, and the process repeats until no further additions can be
made. At this point, the cluster’s nodes are considered to be de-
fined, and their schedule is fixed until the end of the process. The
incremental scheduling of each cluster is performed using a mod-
ified list scheduling algorithm that accounts for the resource con-
straints posed by the previously scheduled clusters, i.e., that does
not modify the scheduling of such clusters. The intuition moti-
vating this heuristic is to use clusters to slice the nodes on the
dataflow’s “longest paths” (high urgency rank) resulting from data
dependencies and resource conflicts, so as to reduce latency.

The selection criteria discussed above is modified when nodes
belonging to supernodes are eligible for inclusion in a cluster. Re-
call that nodes in cycles cannot be arbitrarily retimed. Thus when
a supernode is reached, our heuristic objective is to enter as many
nodes that are part of supernode as possible attempting to avoid
infeasibility. Specifically, when a node in a supernode becomes
eligible, it is given highest priority with respect to eligible nodes
with the same urgency-rank. Once a node in a supernode has been
included in the cluster the selection process proceeds as before,
but considering only eligible nodes within the supernode. If an
urgency-rank tie occurs, one first gives priority to nodes with low-
est cycle-delay, then to nodes with highest path-rank, and finally
one breaks ties arbitrarily. When no further nodes are eligible in
the supernode the selection process reverts to the usual process. If
two supernodes are reached simultaneously, both are attempted in-
dependently, and the attempt that succeeds in entering most nodes
in the cluster is retained. After entering all schedulable nodes of a
given supernode, a second supernode may be eligible for inclusion
in the same cluster, using an identical procedure. If infeasibility
occurs (i.e., an invalid retiming with respect to the nodes of a given
cycle is reached), the solution is dropped and the target latency is
increased.

We found this relatively simple heuristic policy to work well for
all filters and transforms we have experimented with. The solution
determined for the IIR example, in the case of Problems 1 and 2,
with m � 2 and Lmax � 2 is the same and shown on the bottom in
Fig. 3.

� Related work

For related work, and contrasts of our approach to decomposing the
code generation problem, see [9] and references therein. Herein we
shall focus on related work on retiming.

A number of approaches have been proposed to determine re-
timings and/or loop unfoldings that minimize latency (maximize
execution-rate) but do not consider resource constraints, e.g., [2,
14]. An algorithm for retiming with a view on minimizing resource
requirements subject to latency constraints, can be found in [7]. By
contrast herein we considered minimizing latency under code size
and resource constraints, and code size minimization under latency
and resource constraints.

A number of approaches, including those of [5] and [10] con-
sider both resource and timing constraints. In the high level syn-
thesis system Cathedral II [5], the dataflow graph is first retimed
to meet an estimated schedule length without considering resource
constraints. Then, a second graph is constructed (based on the orig-
inal DFG and the obtained retiming function) which is used for
scheduling the loop under resource constraints. An upper bound on
the schedule length is obtained using list scheduling, and then iter-
atively decreased, one step at a time. In general, there are many re-
timed graphs with the same schedule length, and thus the first step
of this approach may find an actual retiming function that is not
particularly good with respect to the specific resource constraints
to be considered in the second step. Our approach derives a valid

retiming by simultaneously considering both, resource and timing
constraints.

In [10], a software pipelining algorithm is proposed for opti-
mizing compilers. A data/control flow graph is first analyzed to
find connected components. Each connected component is sched-
uled individually and the original graph is reduced to an acyclic
graph by contracting such components into single nodes. Then the
acyclic graph is scheduled, using list scheduling – nodes (simple
or contracted) are placed in the earliest possible time slot that sat-
isfies all timing and resource constraints with respect to the partial
schedule constructed so far. In case of failure, the initiation inter-
val (and thus latency) is increased. Our approach has similarities to
this one, in that it also identifies cycles in the graph, and treats their
scheduling preferentially. However, our supernodes are treated as
gray-boxes, in that their retiming and scheduling under resource
constraints is still performed together with that of the nodes in the
feed-forward (acyclic) part of the dataflow. This additional flexi-
bility increases our ability to explore and construct (hopefully) op-
timal solutions.

Finally, [6] and [4], explore the idea of improving (compact-
ing) a legal schedule by incrementally rotating source nodes of the
scheduled loop body (i.e., operations currently at the start of the
schedule) to the end of the current schedule, and then percolating
these operations up, to the earliest possible scheduling step. (Note
that such rotation scheme is basically an implicit retiming.) In [4],
a single instruction is moved at a time, and an enhanced percola-
tion algorithm is used to actually re-schedule the entire loop body
after each move. In [6], a set of nodes can be moved at a time, and
those operations are rescheduled. This last approach, even if con-
ceptually different, bear some similarities to our approach. A fun-
damental difference between both heuristic strategies is that, in [6],
the rotation size (i.e., the number of operations rotated at a time) is
heuristically determined up front, starting from a largest admissible
value (related to the current schedule latency) and eventually con-
verging to a rotation size of 1. In our case, a specific target latency
is assumed (and incremented on failure), and thus the algorithm ba-
sically tries to slice uniformly the various dataflow graph paths so
as to achieve the target latency, hopefully with a minimum number
of clusters.

	 Examples

In this section we present a number of examples illustrating the
performance of the retiming heuristics proposed in the paper. We
started by considering specific datapath bindings for the three char-
acteristic loops shown in Table 1. Then, the algorithm was applied
to solve Problem 2, i.e., to find a retiming solution minimizing code
size for the resource constraints posed by the datapath binding, and
assuming two different latency constraints. For all the examples,
except the Avenhous filter with Lmax � 5, the optimal number of
clusters was obtained. The sub-optimal solution was due to the
scheduling of two multiplication nodes (with large slacks) on their
earliest valid positions, during the creation of Cluster 0, later pre-
cluding the scheduling of the last two nodes in Cluster 1.

 Conclusion

We have discussed a code generation phasing for time-critical loops
of VLIW ASIPs, which is particularly suitable for processors with
highly heterogeneous register structures. In this phasing, one first
considers binding, so as to minimize the significant delays that may
be incurred from data transfers, then retiming, and finally, detailed
scheduling of operations and data transfers. The focus of this pa-
per is on the role played by retiming in this framework. Retiming
heuristics were proposed to achieve: 1) minimum latency under
code size and resource constraints; and 2) minimum code size un-
der latency and resource constraints. Experimental results show

Dataflow characteristics Datapath Lmax #
resources cycles clusters

2nd order IIR filter: 10 nodes 2 Mult. 2 (lb) 4 (opt)
4 Mult, 4 Add, 2 transactions 2 Adders 3 2 (opt)
2 cycles, 1 supernode 1 Bus (w=1)
4th order Avenhous filter: 20 nodes 3 Mult. 4 (lb) 3 (opt)
10 Mult, 8 Add, 2 transactions 3 Adders 5 3 (opt=2)
4 cycles, 2 supernodes 1 Bus (w=1)
FFT Butterfly: 16 nodes 2 Mult. 4 (lb) 2 (opt)
4 Mult, 6 Add, 6 transactions 2 Adder 5 2 (opt)
no cycles 1 Bus (w=2)

Table 1: Results of retiming algorithm on sample dataflows.

that the heuristics perform well on characteristic loops of signal
processing applications. We are currently enhancing the binding al-
gorithm described in x2.1, so as to properly account for the impact
on performance of serializing operations (that could otherwise be
executed in parallel) by binding them to common functional units.

References

[1] R. Bellman, A.O. Escobue, and I. Nabeshima. Mathematical
Aspects of Scheduling and Applications. Permagmon, 1982.

[2] L.F. Chao and E. Sha. Scheduling data-flow graphs via retim-
ing and unfoloding. IEEE Trans. on Parallel and Distributed
Systems, 8(12), Dec. 1997.

[3] G. de Micheli. Synthesis and Optimization of Digital Ciruits.
McGraw-Hill, Inc, 1994.

[4] K. Ebcioglu and T. Nakatani. A new compilation tech-
nique for parallelizing loops with unpredictable branches for a
VLIW archietcture. In Languages and Compilers for Parallel
Computing, pages 213–29. MIT Press, 1990.

[5] G. Goosens et al. Loop optimization in register-transfer
scheduling for DSP-systems. In Proc. of DAC, pages 826–
31, 1987.

[6] L.F. Chao et al. Rotation scheduling: A loop pipelining algo-
rithm. IEEE Trans. on CAD, 16(3):229–39, March. 1997.

[7] T.-F. Lee et al. An effective methodology for functional
pipelining. In Proc. of ICCAD, pages 230–33, 1992.

[8] M. Jacome, G. de Veciana, R. Anand, and V. Lapinskii.
Heuristic tradeoffs between prefetching and spilling windows
to reduce memory spills in VLIW ASIPs. Preprint. See
http://horizon.ece.utexas.edu/�jacome.

[9] M. Jacome, G. de Veciana, V. Lapinskii, and R. Anand. Dat-
apath dependent binding and scheduling heuristics for VLIW
ASIPs. Preprint. See http://horizon.ece.utexas.edu/�jacome.

[10] M. Lam. Software pipelining: An effective scheduling tech-
nique for VLIW machines. In Proc. of ACM SIGPLAN, vol-
ume 23, pages 318–28, 1988.

[11] C.E. Leiserson and J.B. Saxe. Retiming synchronous cir-
cuitry. Algorithmica, 6:5–35, 1991.

[12] C. Liem. Retargetable compilers for embedded core proces-
sors. Kluwer Academic Publishers, 1997.

[13] P. Marwedel and Gert Goossens, editors. Code Generation for
Embedded Processors. Kluwer Academic Publishers, 1995.

[14] A. Nicolau and R. Potasman. Incremental tree height reduc-
tion for high-level synthesis. In Proc. of DAC, pages 770–74,
1991.

